Random Forest Based Approach for Concept Drift Handling

نویسندگان

  • Aleksei V. Zhukov
  • Denis N. Sidorov
  • Aoife M. Foley
چکیده

Concept drift has potential in smart grid analysis because the socio-economic behaviour of consumers is not governed by the laws of physics. Likewise there are also applications in wind power forecasting. In this paper we present decision tree ensemble classification method based on the Random Forest algorithm for concept drift. The weighted majority voting ensemble aggregation rule is employed based on the ideas of Accuracy Weighted Ensemble (AWE) method. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits both temporal weighting of samples and ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method with оriginal random forest with incorporated “replace-thelooser” forgetting andother state-of-the-art concept-drfit classifiers like AWE2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Self-Adaptive Ensemble Classifier for Handling Complex Concept Drift

In increasing number of real world applications, data are presented as streams that may evolve over time and this is known by concept drift. Handling concept drift through ensemble classifiers has received a great interest in last decades. The success of these ensemble methods relies on their diversity. Accordingly, various diversity techniques can be used like block-based data, weighting-data ...

متن کامل

Empirical Validation of Random Forest for Agile Software Effort Estimation Based on Story Points

Agile Software development has become famous in industries and replacing the traditional methods of software development. A correct estimation of effort in this concept still remains an argument in industries. Thus, the industry must be able to estimate the effort necessary for software development using agile methodology. For estimating effort different types of neural-networks Probabilistic N...

متن کامل

Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Random Forest Based Approach

Determining the ultimate bearing capacity (UBC) is vital for design of shallow foundations. Recently, soft computing methods (i.e. artificial neural networks and support vector machines) have been used for this purpose. In this paper, Random Forest (RF) is utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on cohesionless soils. The inputs of model are wi...

متن کامل

Concept Drift Detection Using Online Bayesian Classifier

In data classification the goal is to predict the category of novel instances based on a collection of exemplars whose respective categories are known a priori. The state-of-theart includes various algorithms to solve this problem, including Naive Bayes, Random Forest, Support Vector Machines (SVM), among others. Most of these classifiers consider that the statistical data distribution remains ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016